PROMOTE MY BLOG: JUST CLICK BELOW BUTTON

Search Any Paper On This Blog

Thursday, February 24, 2011

MTH202 Final Term Solved Paper For Success

FINALTERM  EXAMINATION
Spring 2010
MTH202- Discrete Mathematics (Session - 1)
Time: 90 min
Marks: 60
Question No: 1    ( Marks: 1 )    - Please choose one
 Whether the relation R on the set of all integers is reflexive, symmetric, antisymmetric, or transitive, where  if and only if

       Antisymmetric
       Transitive
                       *► Symmetric
       Both Symmetric and transitive
   
Question No: 2    ( Marks: 1 )    - Please choose one
 For a binary relation R defined on a set A , if for all  then R is
                        * ► Antisymmetric
       Symmetric
       Irreflexive
   
Question No: 3    ( Marks: 1 )    - Please choose one
 If ( ) = A, then ( ) = B
       ► True
                           * ► False
       ► Cannot be determined
By : Adeel Abbas
   
Question No: 4    ( Marks: 1 )    - Please choose one
 Let
 

►-6
          -*►2
►8
   
Question No: 5    ( Marks: 1 )    - Please choose one
 The part of definition which can be expressed in terms of smaller versions of itself is called

       Base
       Restriction
                                    *► Recursion
       Conclusion
   
Question No: 6    ( Marks: 1 )    - Please choose one
 What is the smallest integer N such that  
                                    * ► 46
       ► 29
       ► 49
   
Question No: 7    ( Marks: 1 )    - Please choose one
 In probability distribution random variable f satisfies the conditions

      
                                    * ►
      
      
   
Question No: 8    ( Marks: 1 )    - Please choose one
 What is the probability that a hand of five cards contains four cards of one kind?

       0.0018
      
                                    *► 0.0024
   
Question No: 9    ( Marks: 1 )    - Please choose one
      A rule that assigns a numerical value to each outcome in a sample space is called
By : Adeel Abbas
       One to one function
       Conditional probability
                                 *  Random variable
   
Question No: 10    ( Marks: 1 )    - Please choose one
 A walk that starts and ends at the same vertex is called
       Simple walk
       Circuit
                            *► Closed walk      
   
Question No: 11    ( Marks: 1 )    - Please choose one
 The Hamiltonian circuit for the following graph is
         
       abcdefgh
       abefgha
                                    *► abcdefgha
   
Question No: 12    ( Marks: 1 )    - Please choose one
 Distributive law of union over intersection for three sets

       ► A È (B È C) = (A È B) È C

       A Ç (B Ç C) = (A Ç B) Ç C

                                    *► A È (B Ç C) = (A È B) Ç  (A È B)

       ► None of these

   
Question No: 13    ( Marks: 1 )    - Please choose one
 The indirect proof of a statement pàq involves

►Considering ~q and then try to reach ~p

  www.allvupastpapers.blogspot.com     
►Considering p and ~q and try to reach contradiction

                              *►Both 2 and 3 above

►Considering p and then try to reach q

    By : Adeel Abbas
Question No: 14    ( Marks: 1 )    - Please choose one
 The square root of every prime number is irrational

       ► True

                            *► False

       ► Depends on the prime number given

   
Question No: 15    ( Marks: 1 )    - Please choose one
 If a and b are any positive integers with b≠0 and q and r are non negative integers such that  a= b.q+r then

                                    *► gcd(a,b)=gcd(b,r)

       ► gcd(a,r)=gcd(b,r)

       ► gcd(a,q)=gcd(q,r)

   
Question No: 16    ( Marks: 1 )    - Please choose one
 The greatest common divisor of 27 and 72 is

       ► 27
       ► 9
                                    *► 1
       ► None of these
   
Question No: 17    ( Marks: 1 )    - Please choose one
 In how many ways can a set of five letters be selected from the English Alphabets?

                                          *► C(26,5)

       ► C(5,26)

       ► C(12,3)

       ► None of these

   
Question No: 18    ( Marks: 1 )    - Please choose one
 A vertex of degree greater than 1 in a tree is called a

       Branch vertex
                                    *► Terminal vertex
       Ancestor
   
Question No: 19    ( Marks: 1 )    - Please choose one
 For the given pair of graphs whether it is By : Adeel Abbas
                        
                                            

       


       Isomorphic

                                    *► Not isomorphic
   
Question No: 20    ( Marks: 1 )    - Please choose one
 The value of (-2)! Is
       ► 0
       ► 1
                        * ► Cannot be determined

Question No: 21    ( Marks: 1 )    - Please choose one
 In the following graph
            
                             


How many simple paths are there from   to 

       ► 2
                       *► 3
       ► 4
   
Question No: 22    ( Marks: 1 )    - Please choose one
 The value of   is
       ► 0
                           *► n(n-1)
      
       ► Cannot be determined
 
Question No: 23    ( Marks: 1 )    - Please choose one
 If A and B are finite (overlapping) sets, then which of the following must be true

       ► n(AÈB) = n(A) + n(B)

                    * ► n(AÈB) = n(A) + n(B) - n(AÇB)

       ► n(AÈB)= ø

       ► None of these

   
Question No: 24    ( Marks: 1 )    - Please choose one
 Any two spanning trees for a graph By : Adeel Abbas
       ► Does not contain same number of edges
                        *► Have the same degree of corresponding edges
       ► contain same number of edges
       ► May or may not contain same number of edges
   
Question No: 25    ( Marks: 1 )    - Please choose one
 When 3k is even, then 3k+3k+3k is an odd.
       ► True
                         *► False

Question No: 26    ( Marks: 1 )    - Please choose one
 Quotient –Remainder Theorem states that for any positive integer d, there exist unique integer q and r such that n=d.q+ r and _______________.
                                    *  ► 0≤r<d
       ► 0<r<d
       ► 0≤d<r
       ► None of these
   
Question No: 27    ( Marks: 1 )    - Please choose one
 The value of  for  x = -3.01 is

             *► -3.01
       -3
       -2
       -1.99
   
Question No: 28    ( Marks: 1 )    - Please choose one
 If p= A Pentium 4 computer,
    q= attached with ups.
 Then  "no Pentium 4 computer is attached with ups" is denoted by

       ~ (pÙq)
       ~ pÚq
       ~ pÙq
                                    *► None of these
   
Question No: 29    ( Marks: 1 )    - Please choose one
 An integer n is prime if and only if n > 1 and for all positive integers r and s, if
    n = r·s, then

►r = 1 or s = 2.

►r = 1 or s = 0.

►r = 2 or s = 3.

►None of these

   
Question No: 30    ( Marks: 1 )    - Please choose one
 If  then the events A and B are called

  www.allvupastpapers.blogspot.com     
                                    *►Independent
►Dependent
►Exhaustive
   
Question No: 31    ( Marks: 2 )
 Let A and B be the events. Rewrite the following event using set notation
                     “Only A occurs”

   
Question No: 32    ( Marks: 2 )
   Suppose that a connected planar simple graph has 15 edges. If a plane drawing of this graph has 7 faces, how many vertices does this graph have?
By : Adeel Abbas
Answer:

Given,
Edges = v =15
Faces = f = 7
Vertices = v =?
According toEuler Formula, we know that,

            f= e – v +2
Putting values, we get
            7 = 15 – v + 2
            7 = 17 – v
Simplifying
            v =1 7-7 =10



Question No: 33    ( Marks: 2 )
 How many ordered selections of two elements can be made from the set {0,1,2,3}?
   
Answer

  The order selection of two elements from 4 is as

P(4,2) =  4!/(4-2)!
            =  (4.3.2.1)/2!
            = 12


Question No: 34    ( Marks: 3 )
 Consider the following events for a family with children:
A={children of both sexes}, B={at most one boy}.Show that A and B are dependent events if a family has only two children.

   
Question No: 35    ( Marks: 3 )
 Determine the chromatic number of the given graph by inspection.
                              www.allvupastpapers.blogspot.com     

   
Question No: 36    ( Marks: 3 )
 A cafeteria offers a choice of two soups, five sandwiches, three desserts and three drinks. How many different lunches, each consisting of a soup, a sandwiche, a dessert and a drink are possible? By : Adeel Abbas
   
Question No: 37    ( Marks: 5 )
 A box contains 15 items,4 of which are defective and 11 are good. Two items are selected. What is probability that the first is good and the second defective?
 Answer

  
Question No: 38    ( Marks: 5 )
 Draw a binary tree with height 3 and having seven terminal vertices.
   
Question No: 39    ( Marks: 5 )
 Find n if
      P(n,2) = 72




By ADEEL ABBAS, Bhakkar. AdeelAbbasbk@gmail.com

No comments:

Post a Comment

PLEASE COMMENT ABOUT YOUR VISIT AND MY SITE

Note: Only a member of this blog may post a comment.