PROMOTE MY BLOG: JUST CLICK BELOW BUTTON

Search Any Paper On This Blog

Wednesday, February 23, 2011

Solved Questions For MTH202 Final Exam


1.
Solution:
f: R R
g: R R
f(x) = x2  g(x) = 3x + 1
         (fog)(x) = f [g(x)]
                    = f [3x + 1]
                    = (3x + 1)2
                    = 9x2 + 6x + 1
         (gof)(x) = g [f(x)]
                    = g [x2]
                    = 3(x2) + 1
                    = 3x2 + 1
We observe that fog gof, that is the commutative law does not hold for the composition of functions.
2.
Solution:
f: R R
    f(x) = x2 - 3x + 2
(fof)(x) = f [f(x)]
          = f (x2 - 3x + 2)
          = (x2 - 3x + 2)2 - 3(x2 - 3x +2) + 2
          = x4 + 9x2 + 4 - 6x3 - 12x + 4x2
              - 3x2 + 9x - 6 + 2
          = x4 - 6x3 + 10x2 - 3x.
3.
f: R R defined by f(x) = x2 + 3x + 1
g: R R defined by g(x) = 2x - 3
         i.            fog(x) = f [g(x)]
         = f [2x - 3]
         = (2x - 3)2 + 3(2x - 3) + 1
         = 4x2 - 12x + 9 + 6x - 9 + 1
         = 4x2 - 6x + 1
       ii.            gof(x) = g [f(x)]
         = g [x2 + 3x + 1]
         = 2 (x2 + 3x + 1) - 3
         = 2x2 + 6x + 2 - 3
         = 2x2 + 6x - 1
      iii.             fof(x) = f [f(x)]
         = f [x2 + 3x + 1]
         = (x2 + 3x + 1)2 + 3(x2 + 3x + 1) + 1
         = x4 + 11x2 + 1 + 6x3 + 6x + 3x2 + 9x + 3 + 1
         = x4 + 6x3 + 14x2 + 15x + 5
  1. gog(x) = g [g(x)]
          = g [2x - 3]
          = 2 (2x - 3) - 3
          = 4x - 6 - 3
          = 4x - 9
4.
f: R R defined by f(x) = x + 1
g: R R defined by g(x) = x - 1
 fog(x) = f [g(x)]
          = f (x - 1)
          = (x - 1) + 1
          = x
gof (x) = g [f(x)]
         = g [x + 1]
         = (x + 1) -1
         = x
          fog = gof = IR
         IR is the identity function.
          IR(x) = x.
5.
f: N Z0 defined by f(x) = 2x
g: Z0 Q defined by g(x) = 1/x
h: Q R defined by h(x) = 5x + 2
To verify associativity we have to prove that ho(gof) = (hog)of.
Consider
  [ho(gof)](x) = h [(gof) (x)]
                  = h [g (f (x))]
                  = h [g (2x)]
                  = h [1/2x]
                  = 5 * 1/2x + 2
                  = 5/2x + 2
[(hog)of] (x) = (hog) [f(x)]
                  = (hog) (2x)
                  = h [g (2x)]
                  = h (1/2x)
                  = 5 * 1/2x + 2
                  = 5/2x + 2
6.
f: R R is the identity function
f(x) = x
fof (x) = f [f(x)]
         = f (x)
         = x
(ff) (x) = f (x) * f (x)
         = x * x
         = x2




What is the smallest integer N such that
a.         éN/7ù = 5         b. éN/9ù = 6
SOLUTION:
a.  N = 7 × (5 – 1) + 1 = 7 × 4 + 1 = 29
b.  N = 9 × (6 – 1) + 1 = 9 × 5 + 1 = 46







EXAMPLE:

                    Use the Euclidean algorithm to find gcd(330, 156)
Solution:
1.Divide 330 by 156:
                              This gives 330 = 156 · 2 + 18
2.Divide 156 by 18:
                              This gives 156 = 18 · 8 + 12
3.Divide 18 by 12:
                              This gives 18 = 12 · 1 + 6
4.Divide 12 by 6:
                              This gives 12 = 6 · 2 + 0
Hence gcd(330, 156) = 6.

By ADEEL ABBAS, Bhakkar. AdeelAbbasbk@gmail.com

No comments:

Post a Comment

PLEASE COMMENT ABOUT YOUR VISIT AND MY SITE

Note: Only a member of this blog may post a comment.