PROMOTE MY BLOG: JUST CLICK BELOW BUTTON

Search Any Paper On This Blog

Thursday, January 13, 2011

MTH101- Calculus And Analytical Geometry

FINALTERM  EXAMINATION
Spring 2009
MTH101- Calculus And Analytical Geometry (Session - 1)
Question No: 1    ( Marks: 1 )    - Please choose one
 If f is a twice differentiable function at a stationary point  and    then f has relative …………. At

       ► Minima
       ► Maxima
       ► None of these
   
Question No: 2    ( Marks: 1 )    - Please choose one
 If f is a twice differentiable function at a stationary point  and    then f has relative …………. At

       Minima    
       ► Maxima
       ► None of these
   
Question No: 3    ( Marks: 1 )    - Please choose one
 

       ► 2
       ► 4
       ► 1
      
   
Question No: 4    ( Marks: 1 )    - Please choose one



       ► 1
       ► 0
       ► e
       ► None of these
   
Question No: 5    ( Marks: 1 )    - Please choose one
 
      
      
      
       
   
Question No: 6    ( Marks: 1 )    - Please choose one
 If  then
       ► 0
      
      
      

Question No: 7    ( Marks: 1 )    - Please choose one
 Consider a function and a constant  then

       ► 0
      
      
      
   
Question No: 8    ( Marks: 1 )    - Please choose one
 Suppose that and  are differentiable  functions of   then
 

      
      
      
      
   
Question No: 9    ( Marks: 1 )    - Please choose one
 The power rule,     holds if n is __________
       ► An integer
       ► A rational number
       ► An irrational number
       ► All of the above
   
Question No: 10    ( Marks: 1 )    - Please choose one
 Let a function  be defined on an interval, and let   and    denotes two distinct points in that interval. If   for all points  and   then which of the following statement is correct?
        is a decreasing function
        is an increasing function
       is a constant function
   
Question No: 11    ( Marks: 1 )    - Please choose one
 If  on an open interval (a,b) then which of the following statement is correct?
        is concave up on (a, b).
        is concave down on (a, b)
       is linear on (a, b).
   
Question No: 12    ( Marks: 1 )    - Please choose one
 What does 'n' represent in Riemann Sum ?
       ► No. of Circles
       ► No. of Rectangles
       ► No. of Loops
       ► No. of Squares
   
Question No: 13    ( Marks: 1 )    - Please choose one
 If   is continuous function such that   then  has  _________  on 
       ► maximum value but no minimum
       ► minimum value but no maximum
       ► both maximum and minimum value
   
Question No: 14    ( Marks: 1 )    - Please choose one
 The expression  , represents a function of :


                            
      
      
         Both  and
   
Question No: 15    ( Marks: 1 )    - Please choose one
    

if c is a constant


       ► 0
      
      
      
   
Question No: 16    ( Marks: 1 )    - Please choose one
 Sigma notation is represented by which of the following Greek letter?





      
      
      
      
   
Question No: 17    ( Marks: 1 )    - Please choose one
 In the following figure, the area enclosed is bounded below by :
                                  
      
      
      
      

Question No: 18    ( Marks: 1 )    - Please choose one
 In the following figure, the area bounded on the sides by the lines are :
                                  
      
      
      
      
   
Question No: 19    ( Marks: 1 )    - Please choose one
 What is the area of the region in the following figure?
                                   
      
      
      
      

Question No: 20    ( Marks: 1 )    - Please choose one
 Which of the following is approximate area under the curve  over the interval , evaluated by using the formula


If the interval  is divided into two sub-intervals of equal
 length and  and  are left endpoint of each sub-interval.
       ► 17
       ► 20
       ► 23
   
Question No: 21    ( Marks: 1 )    - Please choose one
 Which of the following is approximate area under the curve  over the interval , evaluated by using the formula


If the interval  is divided into two sub-intervals of equal
length and  and  are right endpoint of each sub-interval.
       ► 8
       ► 10
       ► 12
   
Question No: 22    ( Marks: 1 )    - Please choose one
 
       ► 1
      
      
      

Question No: 23    ( Marks: 1 )    - Please choose one
 Suppose  and  are integrable functions on [a,b] and c is a constant, then  
      
      
      
       ► 0
   
Question No: 24    ( Marks: 1 )    - Please choose one
 If the function  is continuous on [a,b] and if  for all  in [a,b], then which of the following gives area under the curve  over the interval [a,b]?
      
      
      
       ► (Width) (Height)
   
Question No: 25    ( Marks: 1 )    - Please choose one
 Let region R in the first quadrant enclosed between    is revolved about the
x-axis .Which of the following equation gives the volume of a solid by cylindrical shells?
 
      
      
      
   
Question No: 26    ( Marks: 1 )    - Please choose one
 Let f is a smooth function on [a, b]. What will be the arc length L of the curve y = f(x) from x = a to x = b?


      
      
      
      

Question No: 27    ( Marks: 1 )    - Please choose one
 If f is continuous on (a, b] but does not have a limit from the right then the integral defined by   is called :

       ► Improper
       ► Proper
       ► Line
   
Question No: 28    ( Marks: 1 )    - Please choose one
 For a sequence  if the ratio of  successive terms then the sequence is known as:


       ► Increasing
       ► Decreasing
       ► Nondecreasing
       ► Nonincreasing
   
Question No: 29    ( Marks: 1 )    - Please choose one
 For a sequence  if the ratio of successive terms then the sequence is known as:


       ► Increasing
       ► Decreasing
       ► Nondecreasing
       ► Nonincreasing
   
Question No: 30    ( Marks: 1 )    - Please choose one
 Consider the indefinite integral
Let

Is the following substitution correct?
       ► Yes
       ► No
   
Question No: 31    ( Marks: 1 )    - Please choose one
 The series  be a series with positive terms and suppose that   if   , then which of the following is true?



       ► Converges
       ► Diverges
       ► May converges or diverges
       ► Gives no information
   
Question No: 32    ( Marks: 1 )    - Please choose one
 The series  be a series with positive terms and suppose that   if  , then which of the following is true?


       ► Converges
       ► Diverges
       ► May converges or diverges
       ► Gives no information
   
Question No: 33    ( Marks: 1 )    - Please choose one
 If the series  converges  , then which of the following is true for ?

       ► Converges
       ► Diverges
       ► Gives no information
   
Question No: 34    ( Marks: 1 )    - Please choose one
t  be a series with nonzero terms and suppose that    if , then which of the following is true?


       ► Then the series  diverges
       ► The series  converges absolutely and therefore converges
         May converges or diverges
       ► Gives no information
   
Question No: 35    ( Marks: 1 )    - Please choose one
 
       ► -2
       ► 0
       ► 2
       ► 4
   
Question No: 36    ( Marks: 1 )    - Please choose one
 How many critical points exist for a function  if
       ► Zero
       ► One
       ► Two
       ► Four
   
Question No: 37    ( Marks: 1 )    - Please choose one
   
      
      
      
      
   
Question No: 38    ( Marks: 1 )    - Please choose one
     

      
      
      
      
   
Question No: 39    ( Marks: 1 )    - Please choose one
 Let  then which of the following is the length of the curve?
      
      
      
   
Question No: 40    ( Marks: 1 )    - Please choose one
 Which of the following are first two terms for the Taylor series of  at x = 0?
      
      
      
      
   
Question No: 41    ( Marks: 2 )
 Evaluate the integral

   
Question No: 42    ( Marks: 2 )
 Evaluate the improper integral

   
Question No: 43    ( Marks: 2 )
 A function  has critical point 2 in an interval [0, 5]. Find the maximum value of the function and  point having this value.
   
Question No: 44    ( Marks: 3 )
 Evaluate:
   
Question No: 45    ( Marks: 3 )
 Find the area of the region bounded by the curve , and bounded on the sides by the lines and

we have



   
Question No: 46    ( Marks: 3 )
 Determine whether the following sequence converges or diverges. If it converges, find the limit.
   
Question No: 47    ( Marks: 5 )
 Use the Alternating series Test to determine whether the given series converges

 

   
Question No: 48    ( Marks: 5 )
 Evaluate the integral

Solution



   
Question No: 49    ( Marks: 5 )
 Evaluate the sums


   
Question No: 50    ( Marks: 10 )
 Find the volume of the solid that results when the region enclosed by the given curves is revhttp://www.allvupastpapers.blogspot.com/  
olved about the x – axis.



No comments:

Post a Comment

PLEASE COMMENT ABOUT YOUR VISIT AND MY SITE

Note: Only a member of this blog may post a comment.